Consistency of Learning Bayesian Network Structures with Continuous Variables: An Information Theoretic Approach

نویسنده

  • Joe Suzuki
چکیده

We consider the problem of learning a Bayesian network structure given n examples and the prior probability based on maximizing the posterior probability. We propose an algorithm that runs in O(n log n) time and that addresses continuous variables and discrete variables without assuming any class of distribution. We prove that the decision is strongly consistent, i.e., correct with probability one as n → ∞. To date, consistency has only been obtained for discrete variables for this class of problem, and many authors have attempted to prove consistency when continuous variables are present. Furthermore, we prove that the “log n” term that appears in the penalty term of the description length can be replaced by 2(1+ ) log log n to obtain strong consistency, where > 0 is arbitrary, which implies that the Hannan–Quinn proposition holds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

Learning Hidden Variable Networks: The Information Bottleneck Approach

A central challenge in learning probabilistic graphical models is dealing with domains that involve hidden variables. The common approach for learning model parameters in such domains is the expectation maximization (EM) algorithm. This algorithm, however, can easily get trapped in suboptimal local maxima. Learning the model structure is even more challenging. The structural EM algorithm can ad...

متن کامل

Information-theoretic limits of Bayesian network structure learning

In this paper, we study the informationtheoretic limits of learning the structure of Bayesian networks (BNs), on discrete as well as continuous random variables, from a finite number of samples. We show that the minimum number of samples required by any procedure to recover the correct structure grows as Ω (m) and Ω ( k logm+ k 2 /m ) for non-sparse and sparse BNs respectively, where m is the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015